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J. Phys. A: Math. Gen. 16 (1983) 3971-3986. Printed in Great Britain 

Classical dynamics of a family of billiards with analytic 
boundaries 

Marko Robnik 
Institut fur Astrophysik, Universitat Bonn, Auf dem Hugel 71, D-5300 Bonn, FRG 

Received 6 May 1983 

Abstract. The classical dynamics of a billiard which is a quadratic conformal image of the 
unit disc is investigated. We give the stability analysis of major periodic orbits, present 
the Poincart maps, demonstrate the mixing properties by following the evolution of a small 
element in phase space, show the existence of homoclinic points, and calculate the Lyapunov 
exponent and the Kolmogorov entropy h. It turns out that the system becomes strongly 
chaotic (positive h )  for sufficiently large deformations of the unit disc. The system shows 
a generic stochastic transition. The computations suggest that the system is mixing if the 
boundary is not convex. 

1. Introduction 

The work presented here is a numerical study of the classical dynamics of a certain 
family of billiards with analytic boundaries. I studied this billiard originally in order 
to analyse the statistical properties of its quantum mechanical energy spectrum, in 
particular the distribution of the level spacings. It became clear very soon that the 
classical dynamics of the system is rich enough to present a lot of phenomena of 
nonlinear dynamics. As the family parameter is varied, the system goes through a 
stochastic transition. The limiting cases are the integrable and a mixing system (most 
probably). We can thus observe the destruction of KAM-invariant tori, the arising of 
homoclinic points and the mixing properties. Moreover, since for a calculation of the 
orbits no integration is needed, we are able to determine the Kolmogorov entropy as 
a function of the parameter and thus observe its variation along with the stochastic 
transition. A global qualitative and quantitative knowledge of the classical dynamics 
is important for our understanding of the correspondence to the quantum mechanics 
of the system, which will be presented in a second paper of this series. 

It is not the purpose of the present work to give any introduction or a brief review 
on chaotic behaviour in classical and quantum mechanics. Readers not familiar with 
the field may wish to consult the following reviews and the references therein: Berry 
(1983, 1978), Chirikov (1979), Helleman (1980), Zaslavsky (1981), Robnik (1983). 

2. The definition of the family of billiards 

Our billiard is shown in figure 1. It is the image (in the complex w plane) of the unit 
disc (in the z plane) under the quadratic conformal map w = Ar + Bz’. Its boundary 
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Figure 1. We show how the shape of the billiard changes as the parameter A = B / A  varies. 

is given by ( w =: U + iv) 

u=Acoscp+Bcos2ip,  U = A sin cp + B sin 2cp, (1) 

where cp is the polar angle of the unit circle in the z plane. A non-parametric form 
of the equation (1) in rectangular coordinates U, v reads 

( u 2 +  I I ~ - B ~ ) ~ = A ' ( u ~ +  v 2 ) + 2 B A 2 ~ + B 2 A 2 .  (2) 

We shall always denote A = B / A .  For A = 0 we have a disc, for 0 < A < d  the billiard 
is convex, but at A = a  the curvature of the boundary at cp = 7~ changes sign. For A = a  
the zero of the derivative coincides with the point cp = T, and a cusp occurs there. 

We shall study the dynamics of a point particle moving freely in the interior and 
obeying the reflection law at the boundary. The parameter range of our family is 
0 < A < 4, so that the boundary is analytic everywhere. We assume a unit speed. It 
would be enough to study the system as a function of A = B/A, with A equal to unity. 
However, for investigations of the quantum mechanical energy spectrum it is useful 
to have a family of billiards of constant area. The area of our billiard is equal to 

d = T (  A2 + 2 B2). (3) 
We introduce a curve of billiards of constant area, going through the point A = 1, 
B = 0. Thus d = T. The family can be parametrised as 

A = cos p, B = (1/42) sin p, (4) 

p = tan-'(A&). ( 5 )  

so that 

The parameter range is O < p <  tan-'(l/&) =0.615 4797.. . . 

3. The orbits in configuration space 

An orbit is uniquely determined by the initial position on the boundary, specified by 
the angle cp E ( 0 , 2 ~ ) ,  and by the initial direction, specified by the angle ,y E (-7r/2, ~ / 2 )  
between the velocity vector and the inward normal to the boundary. The numerical 
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study of the orbits has been done on the CDC Cyber 172 computer with accuracy to 
25 decimal places (double precision). The time evolution is determined if the map 
'3 : (qo, xo) + ( q l ,  xl) is known, where cpl, ,yl are the new collision point on the boundary 
and the reflection angle, respectively. The calculation of '3 involves finding zeros of 
a certain function, only. 

In figure 2 we show a typical non-periodic orbit for several parameter values p. 
For small p a caustic is formed-an indication that invariant tori exist. At larger p 
the caustic shrinks and finally disappears, showing that the invariant tori are destroyed. 
For p > 0.338 the orbit seems to fill the entire billiard uniformly. As we shall see, this 
is a consequence of strong stochasticity. 

v 0' 0 '  

1 . . . . . , . . 
-2 0 ,  2 - 2  0, 2 

2 ' . ' " ' ' "  2 " '  

( e )  f l  

i 
i 

r i v 0. ' V O '  

- f  U 2 -2 0 2 
U U 

Fwre 2. A non-periodic orbit with the initial conditions cp = 0, ,y = 0.5 at different values 
of ( a )  p=0.017 319 ( A  =0.012 248), ( b )  p=0.172 066 ( A  =0.122 884), (c) p=0.189014 
(A=O.l35268) , (d)sameas in  ( c ) ,  (e) p=0.205890 (A=O.147679), (f) p=0.514806 
( A  =0.4). In all cases 100 collisions are shown, except in ( d )  where 1000 collisions are 
plotted. (The units on the coordinate axes are arbitrary.) 

Periodic orbits exist at any p. Some of them are shown in figure 3. A periodic 
orbit of period n is specified by a finite sequence ( w l ,  w 2 , .  . . , w,) of points on the 
boundary, where w,,+~ = w l ,  and wi = ui +ioi are complex numbers, j =  1 , 2 .  . . , n. The 
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Figure 3. The major periodic orbits: period two (nos 1 and 2),  period three (3 and 4) and 
period four ( 5  and 6 ) .  The upper collision point is uniquely determined by the parameter 
vj, j = 2 ,  3, 4, 5 (see equation ( 1 ) ) .  

orbit is most easily calculated by using Fermat’s principle: the length L of the orbit 
must be stationary, i.e. the first variation of 

must vanish. 

The position of the maximum at cp = c p 2  is given by 
The vertical period-two orbit clearly connects the maximum and the minimum. 

COS ~ 2 =  (8A)-’[-1+( 1 + 32A2)”’]. (7) 

The upper collision points of orbits nos 3 , 4  (period three) and no 5 (period four) are 
given by p3, cp4, cp5 ,  respectively. From the stationarity of expressions (6) follows 

(8) 

(9) 

4 2  sinq3+2A(1+A)sin2cp3 
cos fp3 + 2A cos 2p3 + - 

JZ sin cp4 + 2A ( 1 - A ) sin 2cp4 
cos cp4 + 2A cos 2cp4 - - 

2 [l + A  + A’-cos c p 3 -  A (  1 + A )  cos 2cp3]1/2=0’ 

2 [ 1 - A + A ’ + cos cp4 + A ( 1 - A )  cos 2cp4]’/’ = O’ 
sincp5+2A(l+A)sin2qs 

[I + A  + A’-COS cp5 - A (  1 + A )  cos 2cp5]l/’ 

sincp5+2A(1-A)sin2cp5 
[ 1 - A + A ’ + COS (95 + A (1 - A )  COS 2 ~ 5 1 ~ ”  

= 0. - 

For all other periodic orbits, e.g. the broken period-four orbit in figure 3, the function 
L in ( 6 )  depends on more than one variable. Such orbits were not calculated. 

Next we are interested in the neighbourhood of periodic orbits. The stability of 
period-two orbits is easy to study analytically. The linearisation of the map ( D o @  

around the initial conditions of the periodic orbit (which is a fixed point of (D 0 (D = (D2) 
leads to a unimodular (det= 1) 2 x 2  matrix M, whose trace is equal to 

Tr M = 2[1- 21( l / r l  + 1/r2) + 21’/rlr2], (11) 
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where rl,  r2 are the curvature radii of the boundary at the two collision points and 1 
is the half-length of the closed path, i.e. 1 is the distance between the ‘mirrors’. The 
eigenvalues p of M are thus determined by 

p2-p Tr M + 1  =O.  (12) 

They are either complex conjugates on the unit circle (if ITr MI < 2) or real reciprocals 
(if ITr MI > 2). 

3.1. The horizontal orbit (orbit no 1 ) 

The dimensionless curvatures l / r l ,  l / r 2  at the right and left point, respectively, are 
given by 

1 1 -4A - = 2  1 +4A - 1 
rl 2(1+2A)” rz (1-2A)” 
_ -  

(Here we see that 1 / r2  changes sign at A = B/A =a.) Hence, 

Tr M = 2( 1 - 40A2 + 16A4)/( 1 -4A 2)2, (14) 

which is plotted in figure 4. The horizontal orbit becomes unstable (Tr M = -2) at 
A = (h- 1)/2=0.207 106 78 . .  . . 

0 02 OL 
x 

Figure 4. The result of the analytical stability analysis of the period-two orbits (see figure 
3). We plot the trace of the matrix M, which is the linear part of @’ near the periodic 
point. The arrow shows where the orbit 1 goes unstable and doubles. 

3.2. The vertical orbit (orbit no 2 )  

Due to symmetry l / r l  = l /r2,  and this is equal to 

- = 2  1 [3+(1+32A2)1/2](1+32A2)1/2 
r 1 + ( 1  +32A2)”2 

It turns out that the trace is always greater than 2, as shown in figure 4. Thus the 
vertical period-two orbit is unstable for any A. 

It will be seen in 0 4 that orbit no 1 is the most important, in the sense that it is 
surrounded by the largest stability island. Since Tr M = -2 at the bifurcation point, the 
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eigenvalues are equal to minus one. So, it is a period doubling bifurcation. The 
subsequent series of period doubling bifurcations has been observed and the estimated 
limit is A * =  0.241, or p* = 0.402. The doubled orbit no 1 is also seen by means of 
the PoincarC maps discussed in 0 4. But it is interesting to see the doubled orbits in 
the configuration space (figure 5 )  as well. 

1 

Figure 5. The first two bifurcations of the period doubling sequence of the orbit 1 in 
configuration space (schematically). 

It is seen from figure 5 that the doubled orbit 1' can be easily specified in a geometric 
way: its angle cplz determining the upper collision point (near cp = T )  is given by the 
condition that the reflection angle ,y vanishes there, which yields 

COS p,2=-1/4A(l+A). 

The orbit appears for the first time when the RHS is equal to-minus one, which is 
precisely the condition for the instability of orbit 1, namely A = (42  - 1)/2. It is possible 
to calculate analytically the value of A at which l 2  bifurcates ( l z +  14) and becomes 
unstable (see table 1). 

Table 1. Stability of the major periodic orbits. 

Orbit no 

1 
2 
3 
4 
5 
6 
l 2  
1" 

Goes unstable at A,,, 

0.20710 67811 86547 52440 68444= (42- 1)/2 
0 (always unstable) 
0 (always unstable) 
0.1762 
0.17602 
0 (always unstable) 
0.23751 88847 29279 19076 61218 
0.241 (extrapolared from 1 and 12)  

The stability of orbits nos 3, 4, 5 can be studied analytically, but the expressions 
become too complicated. Their stability was investigated numerically. It turns out 
that orbit no 3 is always unstable, while orbit no 4 is found to be stable for 0 < p < 
0.2442. Similarly, orbit no 5 of period four is stable in the interval 0 < p < 0.243 97, 
while orbit no 6 is unstable for all p. The stability analysis is summarised in table 1. 
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4. The Poincare maps 

A complete knowledge of a dynamical system can be reached only by exploring its 
phase space. Usually, the practical way of doing this is to introduce a surface of section 
( S O S )  and to investigate the PoincarC map defined by the flow. For billiards the natural 
coordinates on SOS are the arc length parameter s of the boundary and the tangential 
velocity, i.e. the sine of the reflection angle, sinx. They are canonically conjugate, 
which means that the PoincarC map is area preserving. In our case it is more convenient 
to take the parameter gc (the polar angle of the unit circle in the z plane) instead of 
s, because s is related to the coordinates U, v by an elliptic integral. Defined in this 
manner the map is not area preserving, but it preserves the topology of the phase 
portrait on S O S .  

A series of PoincarC plots is shown in figure 6. At p = 0 we have a circular disc 
and the phase portrait is dull (not shown): each horizontal line is an invariant torus. 
It consists of periodic points of period n if ,y = ( n  - 2)7r/2n. For a small value of p,  
such as in figure 6 ( a ) ,  the system is almost integrable. Most of the invariant curves 
still exist, although some of the rational tori are already destroyed, however. This is 
the case for period-two invariant curves. But two stable periodic points and two 
unstable periodic points survived the perturbation, as predicted by the PoincarC- 
Birkhoff theorem. They correspond to orbits nos 1 and 2, respectively. The stable 
four-cycles correspond to orbit no 5 of figure 3. The lower cycle describes a clockwise 
rotation, and the upper one a counterclockwise rotation. Between the stable periodic 
points there are unstable points of period four, and they correspond to the broken 
orbit of figure 3. 

The invariant curve consisting of period-three points ( x  = 7r/6) is also broken, but 
for each of the two there is a stable and an unstable three-cycle which survived the 
perturbation of the disc. (The positions of the corresponding hyperbolic and elliptic 
periodic points are indicated, but no tori around them are shown.) We see that all 
low-resonance invariant curves are destroyed for small perturbations of the circular 
disc, as is permitted by the KAM theorem. Between the persisting invariant curves 
there may be regions of ‘microscopic’ stochastic motion. While confined between the 
irrational tori, the chaotic motion cannot be observed on the ‘macroscopic’ scale. 

With increasing value of p still more invariant curves are successively destroyed 
and the chaotic motion in resonant gaps can eventually be observed on the ‘macroscopic’ 
scale (figure 6(  6)). These stochastic regions develop near the separatrices connecting 
the unstable periodic points, as is clearly seen for period three, for instance. 

An interesting question is: when does the last large-scale torus break up? (By 
large-scale invariant curve we mean a simple connected invariant curve existing for 
all cp E (0,27r).  It thus separates the phase space ( S O S )  in two disjoint regions.) At 
the moment when this last large-scale torus is broken the particle can make excursions 
through the entire phase space, with the exception of small stability islands. This seems 
to happen quite abruptly at some p between p = 0.172 (figure 6( 6 ) )  and p = 0.214 
(figure 6 ( c ) ) .  The two curves in figure 6(c) near sin,y=*0.9 are virtual invariant 
curves, because after > 10 000 collisions the particle diffuses into the chaotic region 
of S O S .  This was observed in configuration space too. First, after a few hundred 
collisions a virtual caustic appears, but after roughly 10 000 the unoccupied part of 
the billiard is slowly filled. Hence this is a ‘state’ localised around a virtual torus only 
for finite, but nevertheless large, times. These virtually localised orbits are responsible 
for  the fluctuations in the plot density in the chaotic region. The reason for the transient 
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Figure 6. ( a )  The PoincarC surface of section at p=0.1294205 ( A  =0.092029). The 
ordinate is the sine of the reflection angle, and the abscissa is the parameter determining 
the position of the collision point on the boundary (see equation (1)). 

Figure 6. ( b ) - ( g )  The PoincarC surface of section at ( b )  p=O.172066 ( A  =0.122 884), 
( c )  p=0.214299 ( A  -0.153 895) ( d )  p=0.256029 ( A  =0.185 102), (e) p=0.297 173 
(A=O.216545), ( f )  p=0.337658 (A=0.248268), (g) p=0.377420 (A=0.280314). 
The scale on the coordinate axes is as in figure 6(a ) .  

localisation is the slow diffusion between the remnants of a broken torus, which consist 
of chains of ‘microscopic’ stability islets. The diffusion is not quite smooth, but can 
be interrupted by abrupt and rapid spreading. This occurs, however, at large time 



Stochastic transition 3979 

intervals, typically a few thousand collisions. The origin of such jumps is obviously 
the encounter of a hyperbolic orbit or its neighbourhood. 

Such fluctuations implied by the slowness of the spreading of orbits are also observed 
in figure 6(d), where p = 0.256 0289. (Note that the smooth variation of the density 
along the abscissa is due to the fact that our map is not area preserving. In other 
words, the invariant measure of the flow is proportional to the area element of our 
SOS times the derivative ds/dcp.) All large scale invariant curves have disappeared, 
and the size of the islets of stability decreases rapidly. The largest island surrounds 
the stable period-two orbit. In its vicinity there is a chain of smaller islands around a 
stable four-cycle. 

In figure 6(e), the horizontal period-two orbit is already unstable, but in the 
neighbourhood there are stable periodic orbits of period four, which were born by the 
period doubling bifurcation of orbit no 1, and correspond to the doubled orbit shown 
in figure 5. This orbit goes unstable at p = 0.324 06. . . ( A  = 0.237 518 88 . . .). Having 
two values of the parameter p of the period doubling sequence of orbit no 1, we can 
use the well known universal behaviour for area preserving maps (Greene er a1 1981) 
to predict the convergence limit p* = ( S p ,  - p o ) / ( 6  - 1) = 0.33 ( A *  = 0.241) which is 
very near the point p = 0.339 837 . . . (perhaps coincident) at which the curvature 
changes sign ( A  =$). (Here 6 = 8.721 097 200 . . . is the universal rescaling parameter.) 
Otherwise the motion on the SOS is everywhere stochastic and becomes even more so 
at larger p such as shown in figure 6 ( 0 ,  where the fluctuations of the density are still 
visible, but disappear in a smooth sea of chaotic motion of figure 6(g). 

5. The homoclinic points and the mixing property 

In figure 7 we demonstrate the meaning of the mixing property of a dynamic system. 
We show how a small element r of figure 7(a) evolves in time (figures 7(b)-(e)). Its 
image under the evolution map CP is shown for 1, 2, 3 and 4 collisions. The process 
is really very much like the mixing of milk in a cup of coffee. Remembering that the 
vertical sides of SOS should be identified, the reader can easily recognise a transforma- 
tion shown schematically in figure 8. 

in stable, integrable regions with invariant tori is in contrast to 
this behaviour. For example, at p = 0.172 066, r lies completely within a stable island 
surrounding the periodic point of period two (see figure 6(b)). Therefore CP”(r) 
remains confined within tori forever and its form is hardly distorted even after 100 
collisions as shown in figure 9. 

An intermediate situation occurs if r lies partially in a stable island and partially 
in a stochastic region (figure 10). The central core remains trapped by tori, whereas 
its envelope is deformed into a filamentary structure and the filaments are pulled out 
and wind in a turbulent way to form ‘hairs’ of the core. 

We now show the existence of the homoclinic points. To do this let us look more 
closely at the orbit no 1 of period two, the instability interval of which has been 
determined rigorously in P 3. In the PoincarC plot of figure 6(e) this orbit is already 
unstable and appears there as a pair of hyperbolic periodic points located at cp = 0 and 
cp = T on the axis x = 0. Take that one sitting at cp = T. Its stable and unstable manifolds 
join smoothly, forming a separatrix. The question is when do they cross transversally? 
We claim that in figure 7(c) the manifolds do meet transversally. To see this observe 
that the element r is a neighbourhood of the hyperbolic point, which is a fixed point 

The evolution of 
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Figure 7. The mixing property of the billiard at p=O.514 806 ( A  =0.4). We show the 
evolution of the element r ( a )  in phase space after one (b) ,  two ( c ) ,  three ( d )  and four 
collisions (e ) .  At the symmetry centre of r sits a hyperbolic periodic point of period two 
associated with orbit 1. 
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Figure 10. The evolution of the element r as plotted in figure 7(a) at p=0.305 325 
( A  =0.222 866) for two (a) ,  four ( b ) ,  and ten collisions ( c ) ,  and at p=O.337 658 ( A  = 
0.248268) for two ( d ) ,  four ( e )  and six collisions ( f ) .  

of the second iterate @'. It is clear that the thin ribbon @*(r) follows the direction 
of the unstable manifold. Let us find the second iterate of the inverse map. As a little 
reflection shows, this is just the mirror image, i.e. @-'(I') is obtained from @'(r) by 
,y+-x. This ribbon is stretched along the stable manifold W', which crosses the 
unstable manifold W" transversally at the point marked H in figure 11. In the small 
rectangle of the intersection @'(r) n @-'(r) sits a homoclinic point (see the review by 
Guckenheimer (1979). Due to mirror symmetry it must lie exactly on the symmetry 
line ,y = 0. In this way we have constructed a map, defined by O4 on the set @-'(r), 
which is very much like Smale's horseshoe map. It is thus certainly non-integrable. 
We have actually good reasons to believe that the system is mixing (and thus ergodic) 
also globally (not only in a stochastic component) for sufficiently large p ;  most probably 
for A >a, i.e. as soon as the boundary is not convex. In other words, at the moment 
when the boundary becomes non-convex the transversality occurs. Equivalently, one 
has to prove that one of the manifolds (and thus both) meets the symmetry line at 
skew angle for A > f .  The numerical evidence is strong in support of this, because 
homoclinic points exist already for A = 0.248 268 as can be inferred from figure 10(e). 
We note also that the convergence limit of the period doubling sequence coincides 
with this value of p within the observational accuracy Ap = kO.01. A more detailed 
study of this interesting threshold is in progress. 
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Figure 11. A homoclinic point H sits at the intersection of the stable manifold W s  and 
the unstable manifold W" of the hyperbolic fixed point of @* (associated with orbit 1). 
W' is revealed in figure 7 ( c ) ,  where @*(r) follows its direction. W" is the mirrored image 
of W' with respect to the symmetry line x = 0. The inverse map W2(r) is stretched along 
W". Thus m4 defines a map on the set @-*(I7 which is very similar to the horseshoe map. 
(Here p is the same as in figure 7.) 

6. The Lyapunov exponent and the Kolmogorov entropy 

A quantitative measure for the divergence of the flow is the Lyapunov exponent. Its 
definition for a quite general class of flows is based on the following facts (see Benettin 
and Strelcyn 1978). Take a tangent e at the point x in phase space M. Let (0: denote 
the flow carrying x along its orbit to the position x(r) at time r, (0:: x-, x(t) .  If d(0: 
is its derivative with respect to x (the tangent mapping), then the limit 

i -x  lim r-' InIda:( e)/  = A(x,  e) (16) 

exists, and is finite for all x E M, except for a set of Lebesque measure zero. (If M 
has a boundary, then those orbits which encounter the boundary for a finite t must 
be excluded too.) By I / we denote the length (Euclidean metric) of a vector. It can 
be shown that: (i) A(x, e) depends on x, on the direction of e, but not on le/;  (ii) it 
can assume at most three different values, the so-called Lyapunov characteristic 
numbers of the flow; (iii) for almost all e (in the sense of Lebesque) it is equal to the 
maximal characteristic number, A,,,( x), which is always non-negative; (iv) A,,,( x )  is 
obviously constant along each orbit of the flow. 

Hence the physical meaning: if two initial points are separated by a small distance 
Do(x), then as time goes on their separation Dl will (almost certainly) grow exponen- 
tially, 

Dt(x)  = exp(La,(x)t). (17) 
Thus the Lyapunov exponent AmaX(x) is the local measure for the exponential diver- 
gence of nearby orbits. Such exponential divergence is responsible for the 'coff ee-and- 
milk' story of figure 7. After a short time the small element is evenly distributed in 
the phase space on some coarse scale. (Due to the Liouville theorem the microscopic 
volume is preserved.) It is useful to introduce such a coarsened scale. The coarsened 
volume T, as a function of time increases exponentially, 

rt =TO exp(Amaxt), (18) 
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until is occupies the entire phase space and the evolution behaves as a diffusion process. 
In figure 7 this happens already after a few collisions. 

In our case the time is the length of the orbit, because we assume unit speed. 
Amax(x), henceforth denoted just by A ( x ) ,  can be calculated numerically by the method 
explained by Benettin and Strelcyn (1978). The idea is to exploit the linearity of the 
tangent map da:. Starting with a segment ei (of length leil = for instance), one 
calculates its length e,,, after one collision, and rescales it to the original length. If 
PI = ~ e i + l ~ / ~ e z ~ ,  then after n collisions the Lyapunov exponent is approximated by 

1 n-1 

A = -  Inpi. 
t i = o  

In figure 12 we show a typical behaviour of A as it approaches its limiting value. 
The following facts have been observed numerically. (a) Small fluctuations (of order 
< 1 “/o) were observed for quite large n, such as n = 5000. (b) The same limiting value 
was indeed found for all directions of the initial segment e. (c) The limiting value of 
h is independent (within the fluctuations) of the length le1 over ten orders of magnitude 
( < lei < 1W6). (d) A is found constant on a given stochastic component, which 
agrees with observations (and assumptions) by Benettin and Strelcyn. 

OLt 1 
i 
1 

A lr-4--A- 
0 2  

I I I 

lI.-._i-ii__ i 
0 OLx103 0 8 ~ 1 0 ~  1 2 x 1 0 3  1 6 x 1 0 ’  2x10 ’  

T,me t 

‘Figure 12. A typical run of the Lyapunov exponent as approxlmated by formula (19) 

Whereas the Lyapunov exponent A(x) measures the local divergence of orbits, one 
would like to define a quantity which does this globally for the entire phase space. 
Suppose that the phase space is a single stochastic component, containing a dense 
orbit. Then a global quantity characterising the divergence of the flow is given by the 
average over the phase space M, 

and is called the Kolmogorov entropy. Here p must be the normalised, invariant 
measure of the flow; for Hamilton systems this is the Liouville measure. Since M 
contains a dense orbit, such a definition is useful: h tells us what the mean divergence 
of orbits is. If M is the union of several invariant sets, for example if M consists of 
several stochastic components and stability islands, then the definition (20) is still 
useful. Because A = 0 in stability islands, whereas A > 0 on stochastic components, h 
measures the sum of two effects: the growth of size of the stochastic components, and 
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the increase of the value of A on them, when a system goes through a stochastic 
transition, such as shown in figure 6.  The Kolmogorov entropy is thus a natural quantity 
to describe a stochastic transition. 

To calculate h for a Hamilton system is a very hard problem generally. Firstly, 
A ( x )  must be calculated on a sufficiently dense grid in phase space. Secondly, to 
calculate A ( x )  at the grid point x one has to follow a pair of orbits for a sufficiently 
long time. Therefore, to calculate h for a smooth system like a hydrogen atom in a 
strong magnetic field (Robnik 1981, 1982) is impossible, because the numerical 
integration of orbits is too expensive. There are very few systems to date for which 
h has been calculated, notably the generalised stadion considered by Benettin and 
Strelcyn. Even for billiards, where no integration is necessary, the calculation of h is 
quite computer-time consuming. In our case we have taken a grid of 10 X 10 points 
in the quadrant ((p, sin ,y) E ( 0 , 2 ~ )  X ( 0 , l ) .  (Of course, in calculating the phase average 
(20) the true invariant measure was used.) At each grid point a pair of orbits was 
followed for 1000 collisions and A ( x )  was calculated. Thus for a particular value of 
the parameter p one has to calculate 2 X lo5 collisions. This has been done for 35 
different values of p in order to obtain the graph of the Kolmogorov entropy h( p )  as 
a function of the family parameter p (figure 13). Altogether 7 X lo6 collisions were 
calculated and the total computer time (CDC Cyber 172) used to plot the graph of 
figure 13 is about 30 hours. These facts demonstrate the importance and necessity of 
simple systems. In table 2 we list the values h ( p ) .  

Figure 13 is believed to be typical for a system with a stochastic transition. We 
have marked the positions at which important bifurcations of periodic orbits occur. 

An interesting and important question is whether the dependence of h on a 
parameter of the flow has some general universal properties. To decide this it is'first 
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Figure 13. The Kolmogorov entropy h as a function of the parameter p.  The area of the 
billiard is held constant and equal to d = e. The speed of the particle is unity. At the 
same p but different speed U ,  and area d, the entropy is equal to h ,  = u1 h ( p ) ( d / d , ) ' ' * .  
The arrows indicate the positions of the most important bifurcations at which some of the 
major orbits go unstable. At  the point marked c the billiard becomes non-convex. The 
thickness of dots corresponds to the error bars, except at the plateau of the maximum 
where they are larger (because of some numerical problems). 



Stochastic transition 3985 

Table 2. The Kolmogorov entropy h as a function of the parameter p (or A )  at unit speed 
and area of the billiard a! = v. 

P h = B / A  h P A=B/A h 

0.052 
0.086 
0.104 
0.129 
0.146 
0.156 
0.164 
0.172 
0.180 
0.193 
0.202 
0.214 
0.231 
0.243 
0.256 
0.276 
0.286 
0.298 

0.037 
0.061 
0.074 
0.092 
0.104 
0.111 
0.117 
0.123 
0.129 
0.138 
0.145 
0.154 
0.166 
0.175 
0.185 
0.200 
0.208 
0.217 

0.001 
0.002 
0.002 
0.003 
0.004 
0.007 
0.012 
0.022 
0.028 
0.039 
0.058 
0.075 
0.101 
0.118 
0.140 
0.173 
0.191 
0.211 

0.322 
0.337 
0.354 
0.364 
0.377 
0.401 
0.417 
0.437 
0.455 
0.477 
0.492 
0.506 
0.529 
0.536 
0.550 
0.564 
0.578 

0.236 
0.248 
0.261 
0.269 
0.280 
0.300 
0.313 
0.330 
0.346 
0.365 
0.379 
0.392 
0.413 
0.420 
0.433 
0.447 
0.461 

0.243 
0.264 
0.285 
0.296 
0.312 
0.333 
0.346 
0.361 
0.373 
0.386 
0.396 
0.398 
0.409 
0.41 1 
0.413 
0.416 
0.416 

necessary to define some universal parameter for systems with a stochastic transition. 
Perhaps such a parameter is provided by the mean curvature of the associated geodesic 
flow, or by the relative invariant measure of the stochastic components. Another 
possibility is to look how h ( p )  varies with p near the convergence limit p* of the 
period doubling sequence for the most stable periodic orbits. As shown in figure 13, 
this limit goes along with the occurrence of homoclinic points and with the change of 
the curvature of the boundary. Interestingly, at the point of this triple coincidence 
the function h( p )  assumes roughly half of its maximal value and has the largest slope 
there. 

7. Discussion and conclusion 

In summary, we have demonstrated by numerical methods that our billiard with analytic 
boundaries is a generic system. As the family parameter p increases, the system is at 
first an almost integrable system with KAM-invariant tori which survived the perturba- 
tion of the circular disc, and later becomes a strongly chaotic system. Indeed, the 
described embedding of a horseshoe map near the homoclinic point and the large 
value of the Kolmogorov entropy, and the fact that no proper stochastic subcomponents 
are detected for A > b, suggest the conjecture that the system is mixing (most probably 
on the parameter interval on which the boundary of the billiard is no longer convex). 
If the boundary is convex-in our case for A E (O,$)-and smooth !C553), then a 
general theorem by Lazutkin (1973) predicts the existence of caustics and invariant 
tori. Mather (1982) has recently supplemented Lazutkin’s results: if the boundary is 
C 2  and if its curvature vanishes at least at one point, then there exist trajectories which 
come arbitrarily close to being positively tangent to the boundary and also come 
arbitrarily close to being negatively tangent to the boundary. This implies that caustics 
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and invariant tori cannot exist near the boundary as soon as the curvature vanishes at 
some point. Since the boundary of ouI billiard is analytic, both results, Lazutkin’s and 
Mather’s, apply and agree with numerical experiments. 

Because the system is simple it has been possible to calculate the Kolmogorov 
entropy with relatively high precision. This is important for the study of the stochastic 
transition in classical systems, and for the verification of various predictions of the 
semiclassical theories on the statistical properties of energy spectra (Zaslavsky 1979, 
1981, Robnik and Zaslavsky 1983). This will be studied in the next paper of this series. 

Other questions concerning classical dynamics which seem worth pursuing further 
are the numerical study of the period doubling bifurcations, the determination of the 
sequence in which the large-scale tori are destroyed, the theoretical prediction for the 
location of existing but distorted KAM-tori, a study of ergodic properties-in particular 
a proof of the mixing property. In addition to this asymptotic behaviour it would be 
interesting to study the transient phenomena of long lived localisation of orbits near 
a virtual torus, as described in P 3. 
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